Температура в зависимости от глубины. Расчетная температура грунта

Температура внутри земли чаще всего является довольно субъективным показателем, поскольку точную температуру можно назвать только в доступных местах, например, в Кольской скважине (глубина 12 км). Но это место относится к наружной части земной коры.

Температуры разных глубин Земли

Как выяснили ученые, температура поднимается на 3 градуса каждые 100 метров вглубь Земли. Эта цифра является постоянной для всех континентов и частей земного шара. Такой рост температуры происходит в верхней части земной коры, примерно первые 20 километров, далее температурный рост замедляется.

Самый большой рост зафиксирован в США, где температура поднялась на 150 градусов за 1000 метров вглубь земли. Самый медленный рост зафиксирован в Южной Африке, столбик термометра поднялся всего лишь на 6 градусов по Цельсию.

На глубине около 35-40 километров температура колеблется в районе 1400 градусов. Граница мантии и внешнего ядра на глубине от 25 до 3000 км раскаляется от 2000 до 3000 градусов. Внутренние ядро нагрето до 4000 градусов. Температура же в самом центре Земли, по последним сведениям, полученным в результате сложных опытов, составляет около 6000 градусов. Такой же температурой может похвастаться и Солнце на своей поверхности.

Минимальные и максимальные температуры глубин Земли

При расчете минимальной и максимальной температуры внутри Земли в расчет не берут данные пояса постоянной температуры. В этом поясе температура является постоянной на протяжении всего года. Пояс располагается на глубине от 5 метров (тропики) и до 30 метров (высокие широты).

Максимальная температура была измерена и зафиксирована на глубине около 6000 метров и составила 274 градуса по Цельсию. Минимальная же температура внутри земли фиксируется в основном в северных районах нашей планеты, где даже на глубине более 100 метров термометр показывает минусовую температуру.

Откуда исходит тепло и как оно распределяется в недрах планеты

Тепло внутри земли исходит от нескольких источников:

1) Распад радиоактивных элементов ;

2) Разогретая в ядре Земли гравитационная дифференциация вещества ;

3) Приливное трение (воздействие Луны на Землю, сопровождающееся замедлением последней) .

Это некоторые варианты возникновения тепла в недрах земли, но вопрос о полном списке и корректности уже имеющегося открыт до сих пор.

Тепловой поток, исходящий из недр нашей планеты, изменяется в зависимости от структурных зон. Поэтому распределение тепла в месте, где находится океан, горы или равнины, имеет совершенно разные показатели.

Температура внутри Земли. Определение температуры в оболочках Земли основывается на различных, часто косвенных данных. Наиболее достоверные температурные данные относятся к самой верхней части земной коры, вскрываемой шахтами и буровыми скважинами до максимальных глубин- 12 км (Кольская скважина).

Нарастание температуры в градусах Цельсия на единицу глубины называют геотермическим градиентом, а глубину в метрах, на протяжении которой температура увеличивается на 1 0 С - геотермической ступенью. Геотермический градиент и соответственно геотермическая ступень изменяются от места к месту в зависимости от геологических условий, эндогенной активности в различных районах, а также неоднородной теплопроводности горных пород. При этом, по данным Б. Гутенберга, пределы колебаний отличаются более чем в 25 раз. Примером тому являются два резко различных градиента: 1) 150 o на 1 км в штате Орегон (США), 2) 6 o на 1 км зарегистрирован в Южной Африке. Соответственно этим геотермическим градиентам изменяется и геотермическая ступень от 6,67 м в первом случае до 167 м - во втором. Наиболее часто встречаемые колебания градиента в пределах 20-50 o , а геотермической ступени -15-45 м. Средний геотермический градиент издавна принимался в 30 o С на 1 км.

По данным В. Н. Жаркова, геотермический градиент близ поверхности Земли оценивается в 20 o С на 1 км. Если исходить из этих двух значений геотермического градиента и его неизменности в глубь Земли, то на глубине 100 км должна была бы быть температура 3000 или 2000 o С. Однако это расходится с фактическими данными. Именно на этих глубинах периодически зарождаются магматические очаги, из которых изливается на поверхность лава, имеющая максимальную температуру 1200-1250 o . Учитывая этот своеобразный "термометр", ряд авторов (В. А. Любимов, В. А. Магницкий) считают, что на глубине 100 км температура не может превышать 1300-1500 o С.

При более высоких температурах породы мантии были бы полностью расплавлены, что противоречит свободному прохождению поперечных сейсмических волн. Таким образом, средний геотермический градиент прослеживается лишь до некоторой относительно небольшой глубины от поверхности (20-30 км), а дальше он должен уменьшаться. Но даже и в этом случае в одном и том же месте изменение температуры с глубиной неравномерно. Это можно видеть на примере изменения температуры с глубиной по Кольской скважине, расположенной в пределах устойчивого кристаллического щита платформы. При заложении этой скважины рассчитывали на геотермический градиент 10 o на 1 км и, следовательно, на проектной глубине (15 км) ожидали температуру порядка 150 o С. Однако такой градиент был только до глубины 3 км, а далее он стал увеличиваться в 1,5-2,0 раза. На глубине 7 км температура была 120 o С, на 10 км -180 o С, на 12 км -220 o С. Предполагается, что на проектной глубине температура будет близка к 280 o С. Вторым примером являются данные по скважине, заложенной в Северном Прикаспии, в районе более активного эндогенного режима. В ней на глубине 500 м температура оказалась равной 42,2 o С, на 1500 м-69,9 o С, на 2000 м-80,4 o С, на 3000 м - 108,3 o С.

Какова же температура в более глубоких зонах мантии и ядра Земли? Более или менее достоверные данные получены о температуре основания слоя В верхней мантии (см. рис. 1.6). По данным В. Н. Жаркова, "детальные исследования фазовой диаграммы Mg 2 SiO 4 - Fe 2 Si0 4 позволили определить реперную температуру на глубине, соответствующей первой зоне фазовых переходов (400 км)" (т.е. перехода оливина в шпинель). Температура здесь в результате указанных исследований около 1600 50 o С.

Вопрос о распределении температур в мантии ниже слоя В и ядре Земли еще не решен, и поэтому высказываются различные представления. Можно только предположить, что температура с глубиной увеличивается при значительном уменьшении геотермического градиента и увеличении геотермической ступени. Предполагают, что температура в ядре Земли находится в пределах 4000-5000 o С.

Средний химический состав Земли. Для суждения о химическом составе Земли привлекаются данные о метеоритах, представляющих собой наиболее вероятные образцы протопланетного материала, из которого сформировались планеты земной группы и астероиды. К настоящему времени хорошо изучено много выпавших на Землю в разные времена и в разных местах метеоритов. По составу выделяют три типа метеоритов: 1)железные, состоящие главным образом из никелистого железа (90-91% Fe), с небольшой примесью фосфора и кобальта; 2) железокаменные (сидеролиты), состоящие из железа и силикатных минералов; 3) каменные, илиаэролиты, состоящие главным образом из железисто-магнезиальных силикатов и включений никелистого железа.

Наибольшее распространение имеют каменные метеориты- около 92,7% всех находок, железокаменные 1,3% и железные 5,6%. Каменные метеориты подразделяют на две группы: а) хондриты с мелкими округлыми зернами - хондрами (90%); б) ахондриты, не содержащие хондр. Состав каменных метеоритов близок к ультраосновным магматическим породам. По данным М. Ботта, в них около 12% железоникелевой фазы.

На основании анализа состава различных метеоритов, а также полученных экспериментальных геохимических и геофизических данных, рядом исследователей дается современная оценка валового элементарного состава Земли, представленная в табл. 1.3.

Как видно из данных таблицы, повышенное распространение относится к четырем важнейшим элементам - О, Fe, Si, Mg, составляющим свыше 91%. В группу менее распространенных элементов входят Ni, S, Ca, A1. Остальные элементы периодической системы Менделеева в глобальных масштабах по общему распространению имеют второстепенное значение. Если сравнить приведенные данные с составом земной коры, то отчетливо видно существенное различие, заключающееся в резком уменьшении О, A1, Si и значительном увеличении Fe, Mg и появлении в заметных количествах S и Ni.

Фигуру Земли называют геоидом. О глубинном строении Земли судят по продольным и поперечным сейсмическим волнам, которые, распространяясь внутри Земли, испытывают преломление, отражение и затухание, что свидетельствует о расслоенности Земли. Выделяют три главные области:

    земная кора;

    мантия: верхняя до глубины 900 км, нижняя до глубины 2900 км;

    ядро Земли внешнее до глубины 5120 км, внутреннее до глубины 6371 км.

Внутреннее тепло Земли связано с распадом радиоактивных элементов - урана, тория, калия, рубидия и др. Средняя, величина теплового потока составляет 1,4-1,5 мккал/см 2. с.

1. Каковы форма и размеры Земли?

2. Какие существуют методы изучения внутреннего строения Земли?

3. Каково внутреннее строение Земли?

4. Какие сейсмические разделы первого порядка четко выделяются при анализе строения Земли?

5. Каким границам соответствуют разделы Мохоровичича и Гутенберга?

6. Какая средняя плотность Земли и как она изменяется на границе мантии и ядра?

7. Как изменяется тепловой поток в различных зонах? Как понимается изменение геотермического градиента и геотермической ступени?

8. По каким данным определяется средний химический состав Земли?

Литература

  • Войткевич Г.В. Основы теории происхождения Земли. М., 1988.

  • Жарков В.Н. Внутреннее строение Земли и планет. М., 1978.

  • Магницкий В.А. Внутреннее строение и физика Земли. М., 1965.

  • Очерки сравнительной планетологии. М., 1981.

  • Рингвуд А.Е. Состав и происхождение Земли. М., 1981.

Один из самых лучших, рациональных приемов в возведении капитальных теплиц - подземная теплица-термос.
Использование этого факта постоянства температуры земли на глубине, в устройстве теплицы дает колоссальную экономию расходов на обогрев в холодное время года, облегчает уход, делает микроклимат более стабильным .
Такая теплица работает в самые трескучие морозы, позволяет производить овощи, выращивать цветы круглый год.
Правильно оборудованная заглубленная теплица дает возможность выращивать, в том числе, теплолюбивые южные культуры. Ограничений практически нет. В теплице могут прекрасно чувствовать себя цитрусовые и даже ананасы.
Но чтобы на практике все исправно функционировало, обязательно нужно соблюсти проверенные временем технологии, по которым строились подземные теплицы. Ведь эта идея не нова, еще при царе в России заглубленные теплицы давали урожаи ананасов, которые предприимчивые купцы вывозили на продажу в Европу.
Почему-то строительство подобных теплиц не нашло в нашей стране большого распространения, по большому счету, она просто забыта, хотя конструкция идеально подходит как раз для нашего климата.
Вероятно, роль здесь сыграла необходимость рытья глубокого котлована, заливка фундамента. Строительство заглубляемой теплицы достаточно затратное, это далеко не парник, накрытый полиэтиленом, но и отдача от теплицы гораздо больше.
От заглубления в землю не теряется общая внутренняя освещенность, это может показаться странным, но в некоторых случаях светонасыщенность даже выше, чем у классических теплиц.
Нельзя не упомянуть о прочности и надежности конструкции, она несравнимо крепче обычной, легче переносит ураганные порывы ветра, хорошо противостоит граду, не станут помехой и завалы снега.

1. Котлован

Создание теплицы начинается с рытья котлована. Чтобы использовать тепло земли для обогрева внутреннего объема, теплица должна быть достаточно углублена. Чем глубже, тем земля становится теплее.
Температура почти не изменяется в течение года на расстоянии 2-2,5 метра от поверхности. На глубине 1 м температура грунта колеблется больше, но и зимой ее значение остается положительным, обычно в средней полосе температура составляет 4-10 С, в зависимости от времени года.
Заглубленная теплица возводится за один сезон. То есть зимой она уже вполне сможет функционировать и приносить доход. Строительство не из дешевых, но, применив смекалку, компромиссные материалы, возможно сэкономить буквально на целый порядок, сделав своеобразный эконом-вариант теплицы, начиная с котлована.
Например, обойтись без привлечения строительной техники. Хотя самую трудоемкую часть работы - рытье котлована -, конечно, лучше отдать экскаватору. Вручную вынуть такой объем земли тяжело и долго.
Глубина ямы котлована должна быть не меньше двух метров. На такой глубине земля начнет делиться своим теплом и работать как своеобразный термос. Если глубина будет меньше, то принципиально идея будет работать, но заметно менее эффективно. Поэтому рекомендуется не жалеть сил и средств на углубление будущей теплицы.
В длину подземные теплицы могут быть любыми, но ширину лучше выдержать в пределах 5 метров, если ширина больше, то ухудшаются качественные характеристики по обогреву и светоотражению.
По сторонам горизонта подземные оранжереи ориентировать нужно, как обычные теплицы и парники, с востока на запад, то есть так, чтобы одна из боковых сторон была обращена на юг. В таком положении растения получат максимальное количество солнечной энергии.

2. Стены и крыша

По периметру котлована заливают фундамент или выкладывают блоки. Фундамент служит основанием для стен и каркаса сооружения. Стены лучше делать из материалов с хорошими теплоизоляционными характеристиками, прекрасный вариант - термоблоки.

Каркас крыши чаще делают деревянным, из пропитанных антисептическими средствами брусков. Конструкция крыши обычно прямая двускатная. По центру конструкции закрепляют коньковый брус, для этого на полу устанавливают центральные опоры по всей длине теплицы.

Коньковый брус и стены соединяются рядом стропил. Каркас можно сделать и без высоких опор. Их заменяют на небольшие, которые ставят на поперечные балки, соединяющие противоположные стороны теплицы, - такая конструкция делает внутреннее пространство свободнее.

В качестве покрытия крыши лучше взять сотовый поликарбонат - популярный современный материал. Расстояние между стропилами при строительстве подгоняют под ширину поликарбонатных листов. Работать с материалом удобно. Покрытие получается с небольшим количеством стыков, так как листы выпускаются длиной 12 м.

К каркасу они крепятся саморезами, их лучше выбирать со шляпкой в виде шайбы. Во избежание растрескивания листа, под каждый саморез нужно просверлить дрелью отверстие соответствующего диаметра. С помощью шуруповерта, или обычной дрели с крестовой битой, работа по остеклению движется очень быстро. Для того чтобы не оставалось щелей, хорошо заранее по верху проложить стропила уплотнителем из мягкой резины или другого подходящего материала и только потом прикручивать листы. Пик крыши вдоль конька нужно проложить мягким утеплителем и прижать каким-то уголком: пластиковым, из жести, из другого подходящего материала.

Для хорошей теплоизоляции крышу иногда делают с двойным слоем поликарбоната. Хотя прозрачность уменьшается примерно на 10%, но это покрывается отличными теплоизоляционными характеристиками. Нужно учесть, что снег на такой крыше не тает. Поэтому скат должен находиться под достаточным углом, не менее 30 градусов, чтобы снег на крыше не накапливался. Дополнительно для встряхивания устанавливают электрический вибратор, он убережет крышу в случае, если снег все-таки будет накапливаться.

Двойное остекление делают двумя способами:

Между двумя листами вставляют специальный профиль, листы крепятся к каркасу сверху;

Сначала крепят нижний слой остекления к каркасу изнутри, к нижней стороне стропил. Вторым слоем крышу накрывают, как обычно, сверху.

После завершения работы желательно проклеить все стыки скотчем. Готовая крыша выглядит весьма эффектно: без лишних стыков, гладкая, без выдающихся частей.

3. Утепление и обогрев

Утепление стен проводят следующим образом. Предварительно нужно тщательно промазать раствором все стыки и швы стены, здесь можно применить и монтажную пену. Внутреннюю сторону стен накрывают пленкой термоизоляции.

В холодных частях страны хорошо использовать фольгированную толстую пленку, покрывая стену двойным слоем.

Температура в глубине почвы теплицы выше нуля, но холоднее температуры воздуха, необходимой для роста растений. Верхний слой прогревается солнечными лучами и воздухом теплицы, но все-таки почва отбирает тепло, поэтому часто в подземных теплицах используют технологию «теплых полов»: нагревательный элемент - электрический кабель - защищают металлической решеткой или заливают бетоном.

Во втором случае почву для грядок насыпают поверх бетона или выращивают зелень в горшках и вазонах.

Применение теплого пола может быть достаточным для обогрева всей теплицы, если хватает мощности. Но эффективнее и комфортнее для растений использование комбинированного обогрева: теплый пол + подогрев воздуха. Для хорошего роста им нужна температура воздуха 25-35 градусов при температуре земли примерно 25 С.

ЗАКЛЮЧЕНИЕ

Конечно, постройка заглубленной теплицы обойдется дороже, а усилий потребуется больше, чем при строительстве аналогичной теплицы обычной конструкции. Но вложенные в теплицу-термос средства со временем оправдываются.

Во-первых, это экономия энергии на обогреве. Каким бы образом ни отапливалась в зимнее время обычная наземная теплица, это будет всегда дороже и труднее аналогичного способа обогрева в подземной теплице. Во-вторых, экономия на освещении. Фольгированная теплоизоляция стен, отражая свет, увеличивает освещенность в два раза.Микроклимат в углубленной теплице зимой для растений будет благоприятнее, что непременно отразится на урожайности. Легко приживутся саженцы, превосходно будут чувствовать себя нежные растения. Такая теплица гарантирует стабильный, высокий урожай любых растений круглый год.

Для моделирования температурных полей и для других расчётов необходимо узнать температуру грунта на заданной глубине.

Температуру грунта на глубине измеряют с помощью вытяжных почвенно- глубинных термометров. Это плановые исследования, которые регулярно проводят метеорологические станции. Данные исследований служат основой для климатических атласов и нормативной документации.

Для получения температуры грунта на заданной глубине можно попробовать, например, два простых способа. Оба способа заключаются в использовании справочной литературы:

  1. Для приближённого определения температуры можно использовать документ ЦПИ-22. «Переходы железных дорог трубопроводами». Здесь в рамках методики теплотехнического расчёта трубопроводов приводится таблица 1, где для определённых климатических районов приводятся величины температур грунта в зависимости от глубины измерения. Эту таблицу я привожу здесь ниже.

Таблица 1

  1. Таблица температур грунта на различных глубинах из источника «в помощь работнику газовой промышленности» еще времён СССР

Нормативные глубины промерзания для некоторых городов:

Глубина промерзания грунта зависит от типа грунта:

Я думаю, что самый простой вариант, это воспользоваться вышеуказанными справочными данными, а затем интерполировать.

Самый надёжный вариант для точных расчётов с использованием температур грунта — воспользоваться данными метеорологических служб. На базе метеорологических служб работают некоторые онлайн справочники. Например, http://www.atlas-yakutia.ru/.

Здесь достаточно выбрать населённый пункт, тип грунта и можно получить температурную карту грунта или её данные в табличной форме. В принципе, удобно, но похоже этот ресурс платный.

Если Вы знаете ещё способы определения температуры грунта на заданной глубине, то, пожалуйста, пишите комментарии.

Возможно Вам будет интересен следующий материал:

Самая большая трудность - избежать патогенной микрофлоры. А это сложно сделать в среде влагонасыщенной и достаточно теплой. Даже в самых лучших погребах всегда есть плесень. Посему нужна система регулярно используемой очистки труб от всякой гадости, накапливающейся на стенках. А сделать это при 3-х метровом залождении не так уж и просто. На ум в первую очередь приходит механический способ - ёршик. Как для чистки дымовых труб. С использованием какой-то жидкой химии. Или газ. Если прокачать через трубу фозген к примеру, то всё подохнет и на пару месяцев возможно этого хватит. Но любой газ вступает в хим. реакции с влагой в трубе и соответственно оседает в ней, что заставляет проветривать долго. А долгое проветривание приведет к восстановлению патогенов . Тут нужен грамотный подход со знанием современных средств чистки.

Вообщем подписьіваюсь под кажньім словом! (правда не знаю чему тут радоваться).

В данной системе я вижу несколько вопросов которьіе предстоит решить:

1. Достаточно ли длиньі данного теплообменника для еффективного его использования (какой то еффект ессно будет, но не ясно какой)
2. Конденсат. Зимой его не будет, так как по трубе будет прокачиваться холодньій воздух. Конденсат будет вьіпадать с внешней стороньі трубьі - в земле (она теплее). Но вот летом... Проблема КАК вьікачивать конденсат из под глубиньі 3м - уже додумался на стороне збора конденсата сделать герметичньій колодец-стакан для сбора конденсата. В него устанавливать насос которьій будет периодично откачивать конденсат...
3. Предполагается, что канализационньіе трубьі (пластиковьіе) - герметичньі. Если так, то грунтовьіе водьі вокруг не должньі проникать внуть и не должньі влиять на влажность воздуха. Поетому я полагаю влажности (как в подвале) там не будет. По крайней мере зимой. Я думаю подвал влажньій из за плохого проветривания. Плесень не любит солнечньій свет и сквозняки (в трубе будут сквозняки ). А теперь вопрос - НАСКОЛЬКО герметичньі канализационньіе трубьі в земле? На сколько лет мне их хватит? Дело в том что данньій проект сопутствующий - траншея копается для канализации (будет на глубине 1-1.2м) потом изоляция (пенополистирол) и глуже - земельньій аккумулятор). А значит данная система неремонтопригодна при разгерметизации - я ее вьікапьівать не буду - просто засьіплю землей и все.
4. Чистка труб. Думал в нижней точке делать смотровой колодец. сейчас "интузизизма" по етому поводу меньше - грунтовьіе водьі - может оказатся что его затопит и толку будет НОЛЬ. Без колодца вариантов не так то много:
а. с двух сторон делаются ревизии (для каждой 110мм трубьі), которьіе вьіходят на поверхность, в трубьі протягьівается нержавеющий тросик. Для чистки к нему крепим квач. Минусьі - на поверхность вьіходит куча труб, котоьіе будут влиять на температурньій и гидродинамический режим работьі аккумулятора.
б. периодически затапливать трубьі водой с хлоркой, например (или другим дезинфицирующим средством), откачивая воду из конденсационного колодца на другом конце труб. Потом сушка труб воздухом (возможно ревесньім режимом - из дома наружу, хотя такая идея мне не очень нравится).
5. Плесени не будет (сквозняк). а вот другие микроорганизмьі которьіе живут в пьіли - очень даже. Есть надежда на зимний режим - холодньій сухой воздух хорошо дезинфицирует. Вариант защитьі - фильтр на вьіходе из аккумулятора. Или ультрафиолет (дорого)
6. Насколько сильно напряжно гонять воздух по такой конструкции?
Фильтр (мелкая сетка) на входе
-> поворот на 90градусов вниз
-> 4м 200мм труба вниз
-> разделение потока на 4 110мм трубьі
-> 10 метров по горизонтали
-> поворот на 90градусов вниз
-> 1 метр вниз
-> поворот на 90градусов
-> 10 метров по горизонтали
-> сбор потока в 200мм трубу
-> 2 метра вверх
-> поворот на 90градусов (в дом)
-> фильтр бумажньій или тканевой карманньій
-> вентилятор

Имеем 25м труб, 6 поворотов на 90 градусов(поворотьі можно делать плавнее - 2х45), 2 фильтра. Хочется 300-400м3/ч. Скорость потока ~4м/сек

Поделиться: